Studies on New Antitumor Antibiotics, Leptofuranins A, B, C and D

II. Physicochemical Properties and Structure Elucidation

YOICHI HAYAKAWA, KIN-YA SOHDA and HARUO SETO

Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received for publication May 27, 1996)

The structures of new antitumor antibiotics, leptofuranins A, B, C and D were elucidated to be as shown in Fig. 1 by NMR spectral analysis including a variety of two-dimensional techniques. The leptofuranins are novel leptomycin-related substances containing a tetrahydrofuran ring. Leptofuranins C and D were revealed to be in tautomeric isomerism and their relative stereochemistries were analyzed by NOESY experiments.

In the preceding paper¹⁾, we have described the fermentation, isolation and biological activities of new antitumor antibiotics, leptofuranins A, B, C and D, as well as the taxonomy of the producing organism, *Streptomyces tanashiensis* 3007-H1. This paper describes the physicochemical properties and structure elucidation of the leptofuranins (Fig. 1).

Physicochemical Properties

The physicochemical properties of the leptofuranins are summarized in Table 1. The high resolution FAB-MS established the molecular formulae of leptofuranins A, B, C and D as $C_{32}H_{48}O_5$, $C_{33}H_{50}O_5$, $C_{32}H_{46}O_5$ and $C_{33}H_{48}O_5$, respectively. Each leptofuranin exhibited IR absorption peaks due to hydroxyls ($3450 \sim 3460 \text{ cm}^{-1}$) and carbonyls (1720 cm^{-1}).

Structure Elucidation

The ¹³C NMR spectrum of leptofuranin A confirmed the presence of 32 carbons. A heteronuclear multiplequantum coherency $(HMQC)^{2}$ experiment established all one-bond ¹H-¹³C connectivities as shown in Tables 2 and 3. A COSY experiment revealed five spin networks to generate partial structures **I** to **V** (Fig. 2). The heteronuclear multiple-bond correlation $(HMBC)^{3)}$ spectrum displayed ¹H-¹³C long-range couplings from 8-CH₃ to C-7, C-8 and C-9, and from 6-H, 7-H and 9-H to C-8, indicating the connection between partial structures I and II via C-8 as shown in Fig. 2. ¹H-¹³C longrange correlations from 22-CH₃ to C-21, C-22 and C-23, and from 21-H and 23-H₂ to C-22 established the linkage between partial structures IV and V via C-22 (Fig. 2). Partial structures II, III and IV were connected as shown

Fig. 1. Structures of leptofuranins A, B, C and D.

Table 1. Physicochemical properties of leptofuranins A, B, C and D.

	A	В	C	D
Appearance	Colorless oil	Colorless oil	Colorless oil	Colorless oil
Optical rotation	$[\alpha]_{\rm D}^{24} - 62^{\circ}$	$[\alpha]_{\rm D}^{24} - 67^{\circ}$	$[\alpha]_{\rm D}^{20} - 98^{\circ}$	$[\alpha]_{D}^{20} - 77^{\circ}$
	(c 0.29, MeOH)	(c 0.19, MeOH)	(c 0.17, MeOH)	(c 0.40, MeOH)
Formula	C32H48O5	C33H2005	$C_{32}H_{46}O_5$	$C_{33}H_{48}O_5$
FAB-MS m/z	513.3580	527.3737	511.3394	525.3593
$(M+H)^+$ calcd.	513.3611	527.3702	511.3423	525.3580
UV λ_{max} nm (ϵ) in MeOH	239 (25,500)	239 (27,600)	242 (42,500)	242 (45,100)
$IR v_{max} cm^{-1}$	3460, 1720	3460, 1720	3450, 1720	3450, 1720

16

Table 2. ¹³ C NMR assignments for leptofuranins A, B, C and D in $CDCl_3$.									
No.	Α	В	С	D	No.	A	B	C	D
1	164.1	164.1	164.1	164.1	18	45.8	45.8	46.0	46.0
2	120.0	120.1	120.1	120.1	19	81.5	81.3	80.6 ^a , 81.6 ^b	80.6 ^a , 81.6 ^b
3	151.4	151.3	151.4	151.4	20	34.6	34.6	34.6°, 34.9°	34.6 ^a , 34.9 ^b
4	33.4	33.5	33.5	33.6	21	47.9	47.9	46.5 ^a , 46.9 ^b	46.5 ^a , 46.9 ^b
5	81.1	81.3	81.2	81.3	22	81.8	81.8	78.4 ^a , 78.8 ^b	78.4 ^a , 78.7 ^b
6	123.4	122.8	123.4	122.8	23	41.3	41.3	56.0°, 54.3°	56.0ª, 54.3 ^b
7.	130.7	129.8	130.7	129.8	24	60.0	60.0	202.4	202.4
8	129.4	135.5	129.4	135.4	4-CH3	12.3	12.3	12.3	12.3
9	138.7	136.9	138.8	136.9	8-CH ₃	20.4		20.4	
10	32.1	32.0	32.1	32.0	8-CH ₂ CH ₃		26.5		26.5
11	40.7	40.7	40.7	40.8	8-CH ₂ CH ₃		13.5		13.5
12	127.4	127.5	127.5	127.5	10-CH ₃	20.5	20.6	20.6	20.6
13	135.4	135.4	135.5	135.4	14-CH ₃	13.0	13.0	13.0	13.0
14	135.5	135.3	135.6	135.3	16-CH ₃	16.6	16.6	16.7, 16.6	16.7, 16.6
15	129.3	129.3	129.4	129.3	18-CH ₃	15.7	15.8	15.9, 15.8	15.9, 15.8
16	44.3	44.3	44.3	44.3	20-CH ₃	15.4	15.4	15.5, 15.4	15.5, 15.4
17	212.9	212.9	213.3 ^a , 213.1 ^b	213.3 ^a , 213.1 ^b	22-CH ₃	26.8	26.8	27.0 ^a , 28.9 ^b	27.0 ^a , 28.9 ^b

^{a,b} Assignable to each of the tautomeric isomers.

Table 3.	¹ H NMR	data summ	ary for	leptofuranins	A to	D in	CDCl ₃	$(\delta_{\mathbf{H}}$	(J = Hz)).
----------	--------------------	-----------	---------	---------------	------	------	-------------------	------------------------	------------

No.	A	В	С	D
2	5.98 dd (9.8, 0.9)	5.99 dd (9.8, 1.0)	6.00 dd (9.8, 1.0)	5.99 dd (9.8, 1.0)
3	6.94 dd (9.8, 5.8)	6.94 dd (9.8, 5.7)	6.95 dd (9.8, 5.8)	6.94 dd (9.8, 5.8)
4	2.51 m	2.52 m	2.52 m	2.52 m
5	5.00 m	5.00 m	5.02 m	5.00 m
6	5.66 dd (15.7, 6.7)	5.71 dd (16.0, 6.7)	5.68 dd (15.5, 6.8)	5.70 dd (16.0, 7.0)
7	6.74 d (15.7)	6.64 d (15.8)	6.75 d (15.5)	6.64 d (16.0)
9	5.24 d (9.8)	5.22 d (10.0)	5.25 d (10.0)	5.22 d (10.0)
10	2.70 m	2.68 dq (10.0, 6.9)	2.70 m	2.67 m
- 11	2.05 m	2.07 m	2.06 m	2.06 m
12	5.56 dt (15.6, 7.3)	5.56 dt (15.6, 7.3)	5.57 dt (15.5, 7.2)	5.56 dt (15.0, 7.3)
13	5.97 d (15.6)	5.97 d (15.6)	5.98 d (15.5)	5.97 d (15.0)
15	5.10 d (10.0)	5.11 d (10.3)	5.13 d (10.0)	5.12 d (10.0)
16	3.71 m	3.72 dq (10.3, 6.5)	3.72 ^a dq (10.0, 6.8),	3.72 ^a dq (10.0, 6.8),
		• • • • • • • •	3.74 ^b dq (10.0, 6.8)	3.74 ^b dq (10.0, 6.8)
18	2.71 m	2.74 dq (5.0, 7.3)	2.70 ^a m,	2.70° m,
			2.75 ^b m	2.75 ^b m
19	4.04 dd (9.8, 5.0)	4.05 dd (9.8, 5.0)	4.08 ^a dd (9.8, 5.0),	4.07 ^a dd (10.0, 5.0),
			4.03 ^b dd (9.8, 5.0)	4.02 ^b dd (10.0, 5.0)
20	2.33 m	2.34 m	2.42 ^a m,	2.42° m,
			2.36 ^b m	2.36 ^b m
21	2.01 m. 1.46 m	2.01 m, 1.47 m	2.03 ^a m, 1.48 ^a t (4.0),	2.03 ^a m, 1.48 ^a t (4.0),
21		,	2.08 ^b m, 1.45 ^b t (4.0)	2.08 ^b m, 1.45 ^b t (4.0)
23	1.98 m. 1.45 m	1.98 m. 1.46 m	2.56 ^a m, 2.51 ^a m,	2.56 ^a m, 2.51 ^a m,
20	200 0	,	2.63 ^b m, 2.43 ^b m	2.63 ^b m, 2.43 ^b m
24	3 90 m. 3 64 m	3.91 m. 3.65 m	9.80 ^a t (2.8).	9.79 ^a t (2.8),
. 21			9.78 ^b dd (3.3, 2.3)	9.77 ^b dd (3.3, 2.3)
4-CH	1.04 d (7.2)	1.06 d (6.7)	1.06 d (7.2)	1.05 d (7.2)
8-CH.	1.80 s		1.81 d (1.0)	
8-CH_CH_		2.18 m		2.18 m
8-CH-CH-		1.04 t (7.6)		1.03 t (7.2)
10-CH-	0.93 d (6.8)	0.94 d (6.9)	0.94 d (6.8)	0.94 d (6.8)
14-CH-	181 s	L81 s	1.82 d (1.5)	1.81 d (1.5)
14 CH ₃	1 10 d (6.8)	1.11 d (6.5)	1.13 d (6.8)	1.11 d (6.8)
18-CH	1.21 d (7.2)	1.22 d (7.3)	1.24 ^a d (6.9).	1.23 ^a d (6.5),
10 0113	1.21 d (1.2)		1.25^{b} d (6.8)	1.24 ^b d (6.8)
20-CH.	0.72 d (7.5)	0.73 d (7.0)	0.70 ^a d (7.2).	0.70 ^a d (7.2),
20 CH3	0.72 (1.0)	0.1.5 2 (1.0.)	0.73^{b} d (7.2)	0.73 ^b d (7.2)
22-CH	1 30 s	1.31.8	1.28° s.	1.27 ^a s.
22-0113	1.50 5	1.01 0	1.36 ^b s	1.36 ^b s
24-OH	3.38 br	3.38 br		

^{a,b} Assignable to each of the tautomeric isomers.

Fig. 2. COSY, HMBC and NOESY data summary for leptofuranin A.

Bold lines show ¹H spin networks, solid arrows show ¹H-¹³C long-range correlations and dashed arrows show NOEs.

Fig. 3. ¹H NMR spectrum of leptofuranin C in CDCl₃. Marks are put on the spectrum for typical twin peaks due to the tautomers.

in Fig. 2 by ¹H-¹³C long-range couplings from 14-CH₃ to C-13, C-14 and C-15, from 12-H, 13-H and 16-H to C-14, and from 15-H, 16-H, 18-H, 16-CH₃ and 18-CH₃ to a ketone carbonyl carbon (C-17). In addition, a δ -lactone ring was constructed from ¹H-¹³C long-range correlations from 2-H, 3-H and 5-H to an ester carbonyl carbon (C-1). An NOE observed between 19-H and 23-H (δ 1.98) revealed the presence of a tetrahydrofuran ring representing C-19~C-22 to establish the structure of leptofuranin A except for its stereochemistry.

The geometrical configurations of C-6 and C-12 were determined to be 6*E* and 12*E* by $J_{6\sim7}=15.7$ Hz and $J_{12\sim13}=15.6$ Hz. A lower-field chemical shift for 8-CH₃ ($\delta_{\rm C}$ 20.4) and a higher-field chemical shift for 14-CH₃ ($\delta_{\rm C}$ 13.0) indicated 8*Z* and 14*E* configurations, which

were confirmed by NOEs observed between 9-H and 8-CH₃, and between 16-H and 14-CH₃ (Fig. 2). These data established the planar structure of leptofuranin A as shown in Fig. 1.

The ¹³C and ¹H NMR spectra of leptofuranin B were very similar to those of leptofuranin A. Leptofuranin B, however, contained an ethyl group in place of 8-CH₃ in leptofuranin A (Tables 2 and 3) resulting in a downfield shift for C-8 by 6.1 ppm. The substitution of the ethyl group at C-8 in leptofuranin B was further confirmed by COSY, HMQC and HMBC experiments (data not shown).

The ¹H and ¹³C NMR signals for leptofuranin C in $CDCl_3$ partially appeared as twin peaks in the area ratio of 1:1 (Fig. 3, Tables 2 and 3). In addition, HPLC

analysis of leptofuranin C by using an ODS column with 70% acetonitrile at room temperature showed several broad peaks, which collapsed to a sharp single peak at 75°C as shown in Fig. 4, indicating the presence of tautomeric isomers in $CDCl_3$.

A COSY experiment revealed five spin networks to generate partial structures VI to X for one of the isomers (a) as shown in Fig. 5. The other isomer (b) gave the same partial structures including E configurations for C-6 and C-12. The HMBC spectrum displayed ¹H-¹³C long-range couplings for one of the tautomeric isomers (a) as shown in Fig. 5 to construct the structure of leptofuranin C except for a tetrahydrofuran ring, which was established by an NOE observed between 19-H and

Column: PEGASIL-ODS (i.d. $4.6 \text{ mm} \times 250 \text{ mm}$, Senshu Scientific Co.), solvent system: 70% acetonitrile, flow rate: I ml/minute, detection: UV 254 nm. 22-CH₃. The 8Z and 14E configurations were determined by NOEs observed between 9-H and 8-CH₃, and between 16-H and 14-CH₃, respectively (Fig. 5). Although the same ¹H-¹³C long-range correlations were with the other isomer (b), NOEs were observed between 19-H and 23-H (δ 2.63), and between 20-CH₃ and 22-CH₃, but not between 19-H and 22-CH₃. These data indicate that this tautomerism is due to 22-epimerization by such a mechanism as shown in Fig. 6.

A pair of tautomeric isomers was also detected in the ¹³C and ¹H NMR spectra of leptofuranin D (Tables 2 and 3). From the spectral similarity, leptofuranin D appeared to be an 8-ethyl derivative of leptofuranin C, which was confirmed by COSY, HMQC, HMBC and NOESY experiments (data not shown).

The planar structures of leptofuranins A to D thus obtained are summarized in Fig. 1. The leptofuranins are new members of the leptomycin family including leptomycins⁴, kazusamycins⁵, anguinomycins^{6,7} and leptolstatins⁸, which contain a carboxyl group, a hy-

Fig. 6. Relative stereochemistry for the tetrahydrofuran ring of leptofuranin C tautomers and a plausible mechanism of the tautomerism.

Fig. 5. COSY, HMBC and NOESY data summary for leptofuranin C.

Bold lines show ¹H spin networks, solid arrows show ¹H-¹³C long-range correlations and dashed arrows show NOEs.

droxymethyl group or a methyl group at C-24 position. Among the leptomycin family, however, the leptofuranins are characterized as being unique derivatives because of the presence of an aldehyde group at C-24 in leptofuranins C and D as well as a tetrahydrofuran ring in common.

Experimental

Specific rotations were obtained on a JASCO DIP-371 spectropolarimeter at 589.6 nm. Mass spectra were measured on a JEOL HX-110 spectrometer in the FAB mode using *m*-nitrobenzyl alcohol as matrix and polyethylene glycol as internal standard. UV and visible spectra were recorded on a Hitachi U-3210 spectrophotometer. IR spectra were obtained on a JASCO A-102 spectrometer. NMR spectra were obtained on a JEOL JNM-A500 spectrometer with ¹H NMR at 500 MHz and with ¹³C NMR at 125 MHz. Chemical shifts are given in ppm using TMS as internal standard. HPLC analysis was carried out by using a PEGASIL-ODS column (i.d. 4.6 mm × 250 mm, Senshu Scientific Co.) and an SSC-2100 column oven (Senshu Scientific Co.) with 70% acetonitrile at a flow rate of 1 ml/minute.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture, Japan.

References

- HAYAKAWA, Y.; K. SOHDA, K. FURIHATA, T. KUZUYAMA, K. SHIN-YA & H. SETO: Studies on new antitumor antibiotics, leptofuranins A, B, C and D. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiotics 49: 974~979, 1996
- 2) SUMMERS, M. S.; L. G. MARZILLI & A. BAX: Complete ¹H and ¹³C assignments of coenzyme B_{12} through the use of new two-dimensional NMR experiments. J. Am. Chem. Soc. 108: 4285~4294, 1986
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiplebond connectivity by multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986
- HAMAMOTO, T.; H. SETO & T. BEPPU: Leptomycins A and B, new antifungal antibiotics. II. Structure elucidation. J. Antibiotics 36: 646~650, 1983
- KOMIYAMA, K.; K. OKADA, H. OKA, S. TOMISAKA, T. MIYANO, S. FUNAYAMA & I. UMEZAWA: Structural study of a new antitumor antibiotic, kazusamycin. J. Antibiotics 38: 220~223, 1985
- HAYAKAWA, Y.; K. ADACHI & N. KOMESHIMA: New antitumor antibiotics, anguinomycins A and B. J. Antibiotics 40: 1349~1352, 1987
- 7) HAYAKAWA, Y.; K. SOHDA, K. SHIN-YA, T. HIDAKA & H. SETO: Anguinomycins C and D, new antitumor antibiotics with selective cytotoxicity against transformed cells. J. Antibiotics 48: 954~961, 1995
- ABE, K.; M. YOSHIDA, H. NAOKI, S. HORINOUCHI & T. BEPPU: Leptolstatin from *Streptomyces* sp. SAM1595, a new gap phase-specific inhibitor of the mammalian cell cycle. II. Physico-chemical properties and structure. J. Antibiotics 46: 735~740, 1993